Deep neural network-based bandwidth enhancement of photoacoustic data
نویسندگان
چکیده
منابع مشابه
Deep neural network-based bandwidth enhancement of photoacoustic data.
Photoacoustic (PA) signals collected at the boundary of tissue are always band-limited. A deep neural network was proposed to enhance the bandwidth (BW) of the detected PA signal, thereby improving the quantitative accuracy of the reconstructed PA images. A least square-based deconvolution method that utilizes the Tikhonov regularization framework was used for comparison with the proposed netwo...
متن کاملSubjective Intelligibility of Deep Neural Network-Based Speech Enhancement
Recent literature indicates increasing interest in deep neural networks for use in speech enhancement systems. Currently, these systems are mostly evaluated through objective measures of speech quality and/or intelligibility. Subjective intelligibility evaluations of these systems have so far not been reported. In this paper we report the results of a speech recognition test with 15 participant...
متن کاملNMF-based speech enhancement incorporating deep neural network
Recently, lots of algorithms using machine learning approaches have been proposed in the speech enhancement area. One of the most well-known approaches is the non-negative matrix factorization (NMF) -based one which analyzes noisy speech with speech and noise bases. However, NMF-based algorithms have difficulties in estimating speech and noise encoding vectors when their subspaces overlap. In t...
متن کاملAnomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism
Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...
متن کاملMulti-Modal Hybrid Deep Neural Network for Speech Enhancement
Deep Neural Networks (DNN) have been successful in enhancing noisy speech signals. Enhancement is achieved by learning a nonlinear mapping function from the features of the corrupted speech signal to that of the reference clean speech signal. The quality of predicted features can be improved by providing additional side channel information that is robust to noise, such as visual cues. In this p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomedical Optics
سال: 2017
ISSN: 1083-3668
DOI: 10.1117/1.jbo.22.11.116001